Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541591

RESUMO

The combination of Atomic Diffusion Additive Manufacturing (ADAM) and traditional CNC machining allows manufacturers to leverage the advantages of both technologies in the production of functional metal parts. This study presents the methodological development of hybrid manufacturing for solid copper parts, initially produced using ADAM technology and subsequently machined using a 5-axis CNC system. The ADAM technology was dimensionally characterized by adapting and manufacturing the seven types of test artifacts standardized by ISO/ASTM 52902:2019. The results showed that slender geometries suffered warpage and detachment during sintering despite complying with the design guidelines. ADAM technology undersizes cylinders and oversizes circular holes and linear lengths. In terms of roughness, the lowest results were obtained for horizontal flat surfaces, while 15° inclined surfaces exhibited the highest roughness due to the stair-stepping effect. The dimensional deviation results for each type of geometry were used to determine the specific and global oversize factors necessary to compensate for major dimensional defects. This also involved generating appropriate over-thicknesses for subsequent CNC machining. The experimental validation of this process, conducted on a validation part, demonstrated final deviations lower than 0.5% with respect to the desired final part, affirming the feasibility of achieving copper parts with a high degree of dimensional accuracy through the hybridization of ADAM and CNC machining technologies.

2.
Polymers (Basel) ; 15(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299304

RESUMO

The incorporation of ceramic additives is the most commonly used strategy to improve the biofunctionality of polymer-based scaffolds intended for bone regeneration. By embedding ceramic particles as a coating, the functionality improvement in the polymeric scaffolds can be concentrated on the cell-surface interface, thus creating a more favourable environment for the adhesion and proliferation of osteoblastic cells. In this work, a pressure-assisted and heat-induced method to coat polylactic acid (PLA) scaffolds with calcium carbonate (CaCO3) particles is presented for the first time. The coated scaffolds were evaluated by optical microscopy observations, a scanning electron microscopy analysis, water contact angle measurements, compression testing, and an enzymatic degradation study. The ceramic particles were evenly distributed, covered more than 60% of the surface, and represented around 7% of the coated scaffold weight. A strong bonding interface was achieved, and the thin layer of CaCO3 (~20 µm) provided a significant increase in the mechanical properties (with a compression modulus improvement up to 14%) while also enhancing the surface roughness and hydrophilicity. The results of the degradation study confirmed that the coated scaffolds were able to maintain the pH of the media during the test (~7.6 ± 0.1), in contrast to the pure PLA scaffolds, for which a value of 5.07 ± 0.1 was obtained. The ceramic-coated scaffolds developed showed potential for further evaluations in bone tissue engineering applications.

3.
Materials (Basel) ; 15(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36079335

RESUMO

Atomic Diffusion Additive Manufacturing (ADAM) is an innovative Additive Manufacturing process that allows the manufacture of complex parts in metallic material, such as copper among others, which provides new opportunities in Rapid Tooling. This work presents the development of a copper electrode manufactured with ADAM technology for Electrical Discharge Machining (EDM) and its performance compared to a conventional electrolytic copper. Density, electrical conductivity and energy-dispersive X-ray spectroscopy were performed for an initial analysis of both ADAM and electrolytic electrodes. Previously designed EDM experiments and optimizations using genetic algorithms were carried out to establish a comparative framework for both electrodes. Subsequently, the final EDM tests were carried out to evaluate the electrode wear rate, the roughness of the workpiece and the rate of material removal for both electrodes. The EDM results show that ADAM technology enables the manufacturing of functional EDM electrodes with similar material removal rates and rough workpiece finishes to conventional electrodes, but with greater electrode wear, mainly due to internal porosity, voids and other defects observed with field emission scanning electron microscopy.

4.
Materials (Basel) ; 13(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823668

RESUMO

Several natural materials and vegetable waste have relevant mechanical properties, mainly in its fiber format. Particularly, banana fiber (BF) provides a close behavior to the widely spread glass fibers, which places it in an advantageous position for use as a reinforcing material in plastic composites. This work characterizes the behavior of acrylonitrile butadiene styrene (ABS), high impact polystyrene (HIPS), and high density polyethylene (HDPE) reinforced with short fibers of bananas from the Canary Islands for its application in molding processes. Several thermal analyses (Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Melt Flow Index (MFI)) and mechanical tests (tensile, flexural, impact, and Dynamic Mechanical Analysis (DMA)) were carried out in composites with different percentages of banana fiber. The thermal results show that the use of banana fiber is viable as a reinforcement in composites for injection molding processes and the mechanical tests indicate an increase in stiffness and an improvement in maximum flexural stress by increasing the fiber content in composites, so the banana fiber turns out to be a natural alternative for the reinforcement of injected plastic components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...